pub struct ReadVcFuture<T, Cast = VcValueTypeCast<T>>{ /* private fields */ }Implementations§
Source§impl<T, Cast> ReadVcFuture<T, Cast>
impl<T, Cast> ReadVcFuture<T, Cast>
Sourcepub fn strongly_consistent(self) -> Self
pub fn strongly_consistent(self) -> Self
Do not use this: Use [OperationVc::read_strongly_consistent] instead.
Sourcepub fn untracked(self) -> Self
pub fn untracked(self) -> Self
Returns a untracked read of the value. This will not invalidate the current function when the read value changed.
Sourcepub fn final_read_hint(self) -> Self
pub fn final_read_hint(self) -> Self
Read the value with the hint that this is the final read of the value. This might drop the cell content. Future reads might need to recompute the value.
Source§impl<T> ReadVcFuture<T, VcValueTypeCast<T>>
impl<T> ReadVcFuture<T, VcValueTypeCast<T>>
Source§impl<T> ReadVcFuture<T, VcValueTypeCast<T>>where
T: VcValueType,
<<T as VcValueType>::Read as VcRead<T>>::Target: Keyed,
<<<T as VcValueType>::Read as VcRead<T>>::Target as Keyed>::Key: Hash,
impl<T> ReadVcFuture<T, VcValueTypeCast<T>>where
T: VcValueType,
<<T as VcValueType>::Read as VcRead<T>>::Target: Keyed,
<<<T as VcValueType>::Read as VcRead<T>>::Target as Keyed>::Key: Hash,
Sourcepub fn get<'l>(
self,
key: &'l <<<T as VcValueType>::Read as VcRead<T>>::Target as Keyed>::Key,
) -> ReadKeyedVcFuture<'l, T>
pub fn get<'l>( self, key: &'l <<<T as VcValueType>::Read as VcRead<T>>::Target as Keyed>::Key, ) -> ReadKeyedVcFuture<'l, T>
Read the value and selects a keyed value from it. Only depends on the used key instead of the full value.
Sourcepub fn contains_key<'l>(
self,
key: &'l <<<T as VcValueType>::Read as VcRead<T>>::Target as Keyed>::Key,
) -> ReadContainsKeyedVcFuture<'l, T>
pub fn contains_key<'l>( self, key: &'l <<<T as VcValueType>::Read as VcRead<T>>::Target as Keyed>::Key, ) -> ReadContainsKeyedVcFuture<'l, T>
Read the value and checks if it contains the given key. Only depends on the used key instead of the full value.
Note: This is also invalidated when the value of the key changes, not only when the presence of the key changes.
Trait Implementations§
Source§impl<T> From<ReadRawVcFuture> for ReadVcFuture<T, VcValueTypeCast<T>>where
T: VcValueType,
impl<T> From<ReadRawVcFuture> for ReadVcFuture<T, VcValueTypeCast<T>>where
T: VcValueType,
Source§fn from(raw: ReadRawVcFuture) -> Self
fn from(raw: ReadRawVcFuture) -> Self
Converts to this type from the input type.
Source§impl<T> From<ReadRawVcFuture> for ReadVcFuture<T, VcValueTraitCast<T>>where
T: VcValueTrait + ?Sized,
impl<T> From<ReadRawVcFuture> for ReadVcFuture<T, VcValueTraitCast<T>>where
T: VcValueTrait + ?Sized,
Source§fn from(raw: ReadRawVcFuture) -> Self
fn from(raw: ReadRawVcFuture) -> Self
Converts to this type from the input type.
Auto Trait Implementations§
impl<T, Cast> Freeze for ReadVcFuture<T, Cast>where
T: ?Sized,
impl<T, Cast> RefUnwindSafe for ReadVcFuture<T, Cast>
impl<T, Cast> Send for ReadVcFuture<T, Cast>
impl<T, Cast> Sync for ReadVcFuture<T, Cast>
impl<T, Cast> Unpin for ReadVcFuture<T, Cast>
impl<T, Cast> UnwindSafe for ReadVcFuture<T, Cast>
Blanket Implementations§
§impl<T> ArchivePointee for T
impl<T> ArchivePointee for T
§type ArchivedMetadata = ()
type ArchivedMetadata = ()
The archived version of the pointer metadata for this type.
§fn pointer_metadata(
_: &<T as ArchivePointee>::ArchivedMetadata,
) -> <T as Pointee>::Metadata
fn pointer_metadata( _: &<T as ArchivePointee>::ArchivedMetadata, ) -> <T as Pointee>::Metadata
Converts some archived metadata to the pointer metadata for itself.
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Mutably borrows from an owned value. Read more
§impl<T> FutureExt for T
impl<T> FutureExt for T
§fn map<U, F>(self, f: F) -> Map<Self, F>
fn map<U, F>(self, f: F) -> Map<Self, F>
Map this future’s output to a different type, returning a new future of
the resulting type. Read more
§fn map_into<U>(self) -> MapInto<Self, U>
fn map_into<U>(self) -> MapInto<Self, U>
Map this future’s output to a different type, returning a new future of
the resulting type. Read more
§fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
Chain on a computation for when a future finished, passing the result of
the future to the provided closure
f. Read more§fn left_future<B>(self) -> Either<Self, B>
fn left_future<B>(self) -> Either<Self, B>
§fn right_future<A>(self) -> Either<A, Self>
fn right_future<A>(self) -> Either<A, Self>
§fn into_stream(self) -> IntoStream<Self>where
Self: Sized,
fn into_stream(self) -> IntoStream<Self>where
Self: Sized,
Convert this future into a single element stream. Read more
§fn flatten(self) -> Flatten<Self>
fn flatten(self) -> Flatten<Self>
Flatten the execution of this future when the output of this
future is itself another future. Read more
§fn flatten_stream(self) -> FlattenStream<Self>
fn flatten_stream(self) -> FlattenStream<Self>
Flatten the execution of this future when the successful result of this
future is a stream. Read more
§fn fuse(self) -> Fuse<Self>where
Self: Sized,
fn fuse(self) -> Fuse<Self>where
Self: Sized,
Fuse a future such that
poll will never again be called once it has
completed. This method can be used to turn any Future into a
FusedFuture. Read more§fn inspect<F>(self, f: F) -> Inspect<Self, F>
fn inspect<F>(self, f: F) -> Inspect<Self, F>
Do something with the output of a future before passing it on. Read more
§fn catch_unwind(self) -> CatchUnwind<Self>where
Self: Sized + UnwindSafe,
fn catch_unwind(self) -> CatchUnwind<Self>where
Self: Sized + UnwindSafe,
Catches unwinding panics while polling the future. Read more
Create a cloneable handle to this future where all handles will resolve
to the same result. Read more
§fn remote_handle(self) -> (Remote<Self>, RemoteHandle<Self::Output>)where
Self: Sized,
fn remote_handle(self) -> (Remote<Self>, RemoteHandle<Self::Output>)where
Self: Sized,
Turn this future into a future that yields
() on completion and sends
its output to another future on a separate task. Read more§fn boxed<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + Send + 'a>>
fn boxed<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + Send + 'a>>
Wrap the future in a Box, pinning it. Read more
§fn boxed_local<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + 'a>>where
Self: Sized + 'a,
fn boxed_local<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + 'a>>where
Self: Sized + 'a,
Wrap the future in a Box, pinning it. Read more
§fn unit_error(self) -> UnitError<Self>where
Self: Sized,
fn unit_error(self) -> UnitError<Self>where
Self: Sized,
Turns a
Future<Output = T> into a
TryFuture<Ok = T, Error = ()>.§fn never_error(self) -> NeverError<Self>where
Self: Sized,
fn never_error(self) -> NeverError<Self>where
Self: Sized,
Turns a
Future<Output = T> into a
TryFuture<Ok = T, Error = Never>.§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
Source§impl<T> IntoEither for T
impl<T> IntoEither for T
Source§fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
fn into_either(self, into_left: bool) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left is true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self> ⓘ
Converts
self into a Left variant of Either<Self, Self>
if into_left(&self) returns true.
Converts self into a Right variant of Either<Self, Self>
otherwise. Read moreSource§impl<F> IntoFuture for Fwhere
F: Future,
impl<F> IntoFuture for Fwhere
F: Future,
Source§type IntoFuture = F
type IntoFuture = F
Which kind of future are we turning this into?
Source§fn into_future(self) -> <F as IntoFuture>::IntoFuture
fn into_future(self) -> <F as IntoFuture>::IntoFuture
Creates a future from a value. Read more
§impl<T> LayoutRaw for T
impl<T> LayoutRaw for T
§fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>
fn layout_raw(_: <T as Pointee>::Metadata) -> Result<Layout, LayoutError>
Returns the layout of the type.
§impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2where
T: SharedNiching<N1, N2>,
N1: Niching<T>,
N2: Niching<T>,
impl<T, N1, N2> Niching<NichedOption<T, N1>> for N2where
T: SharedNiching<N1, N2>,
N1: Niching<T>,
N2: Niching<T>,
§impl<T> Pointee for T
impl<T> Pointee for T
§impl<F, T, E> TryFuture for F
impl<F, T, E> TryFuture for F
§impl<Fut> TryFutureExt for Futwhere
Fut: TryFuture + ?Sized,
impl<Fut> TryFutureExt for Futwhere
Fut: TryFuture + ?Sized,
§fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok>where
Self::Ok: Sink<Item, Error = Self::Error>,
Self: Sized,
fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok>where
Self::Ok: Sink<Item, Error = Self::Error>,
Self: Sized,
Flattens the execution of this future when the successful result of this
future is a [
Sink]. Read more§fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
Maps this future’s success value to a different value. Read more
§fn map_ok_or_else<T, E, F>(self, e: E, f: F) -> MapOkOrElse<Self, F, E>
fn map_ok_or_else<T, E, F>(self, e: E, f: F) -> MapOkOrElse<Self, F, E>
Maps this future’s success value to a different value, and permits for error handling resulting in the same type. Read more
§fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
Maps this future’s error value to a different value. Read more
§fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
Executes another future after this one resolves successfully. The
success value is passed to a closure to create this subsequent future. Read more
§fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
Executes another future if this one resolves to an error. The
error value is passed to a closure to create this subsequent future. Read more
§fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
Do something with the success value of a future before passing it on. Read more
§fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
Do something with the error value of a future before passing it on. Read more
§fn try_flatten(self) -> TryFlatten<Self, Self::Ok>where
Self::Ok: TryFuture<Error = Self::Error>,
Self: Sized,
fn try_flatten(self) -> TryFlatten<Self, Self::Ok>where
Self::Ok: TryFuture<Error = Self::Error>,
Self: Sized,
Flatten the execution of this future when the successful result of this
future is another future. Read more
§fn try_flatten_stream(self) -> TryFlattenStream<Self>where
Self::Ok: TryStream<Error = Self::Error>,
Self: Sized,
fn try_flatten_stream(self) -> TryFlattenStream<Self>where
Self::Ok: TryStream<Error = Self::Error>,
Self: Sized,
Flatten the execution of this future when the successful result of this
future is a stream. Read more